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Abstract

This paper examines the use of belief functions (also known as Dempster-Shafer methods) in
statistical reliability problems. Starting from the standard Bayesian model for estimating the
survival probability in a binomial model, the problem is changed slightly to introduce indirect
information. A Bayesian and a Dempster-Shafer approach are proposed for the new problem.
The basic properties of the Dempster-Shafer method are discussed, along with connections to
the theory of random sets.

1 Introduction

Consider the problem of estimating the probability that a part will survive until time ¢. Call the survival
probability p,, and assume that an exchangeable sample of parts, X1, ..., X, is selected and tested. The
standard Bayesian model for estimating ps specifies a likelihood from X; ~ Bernoulli(ps) and a prior
distribution 7(ps) for ps. After observing each X; = x;, the prior distribution is updated to a posterior
distribution, 7 (ps|z1,...,T,), using Bayes rule.

Now consider a modified problem. Suppose that instead of observing X;, whether the part i survives
until time ¢, one observes Y;, whether an anomaly is present in part i. Also assume the following

Anomaly Survives to Time ¢ (“Success”)
No Anomaly j i Fails Before Time ¢ (“Failure”)

Figure 1: Anomaly to Survival Relationship.

relationships:

If an anomaly is present, it is possible that the part might survive until time ¢ or might fail before ¢; if
no anomaly is present, the part will survive until time ¢t. This is clearly a simplistic example, but it will
serve to motivate the differences between the Bayesian and Dempster-Shafer approaches.

2 A Bayesian Approach

In the modified problem, no “direct” information about ps is observed, so the standard Bayesian approach
must be changed. Assume that an excahngeable sample of parts is selected and tested, and that data,
Yi1,...,Y,, are observed about the presence or absence of an anomaly. Model Y; ~ Bernoulli(p,). Since
interest still centers on pg, the probability of surviving to time ¢, use the Law of Total Probability to
write ps = P(survives to t|anomaly)p, + P(survives to t|no anomaly)(1 — pg).

Let pyj, = P(survives to tlanomaly). Notice from Figure 1 that P(survives to ¢jno anomaly) = 1 and
thus ps = p,jaPa +1—pa. To complete the Bayesian modeling, a joint prior distribution must be specified
on two of ps, pa, and py|,; the third has its prior distribution induced by the functional relationship.



In many situations, it might be reasonable to assumes that p, and p,|, are independent. If this is the
case, then observing data y; about the presence of absence of an anomaly will not change the marginal
posterior distribution of py|,, but will update the probability of p, and ps. Since the likelihood is free of
Dsja> the model is termed not Bayesian identifiable (Gelfand and Sahu 1999).

Herein lies both the strength and the weakness of the Bayesian approach. Specifying a prior distri-
bution for p, and py|, provides the explicit mechanism for updating ps when collecting “indirect” data
about anomalies instead of “direct” data about survival and failure. However, the data does not provide
additional information about py,. The calculation of ps is dependent on the prior specification for py)q4,
and this dependence continues even as more data is collected. In theory this is not a problem—simply
specify pyj, so that it “correctly” represents the a priori beliefs about the probability of success given
an anomaly. In practice, however, this specification may be difficult or impossible, and this leads to
consideration of a Dempster-Shafer approach to the problem.

3 Basic Properties of Belief Functions

Before discussing a Dempster-Shafer approach to this specific problem, consider the following basic ideas
and properties of Dempster-Shafer theory. For simplicity, this discussion focuses on finite sets; for formal
treatments of infinite sets, see Kohlas and Monney (1995) and Kramosil (2001).

Start with a finite set ©; for concreteness, let @ = {4, B}. Let (0, Se, ) be a probability space, with
Se a sigma field and u a probability. Again for concreteness, let So = 2° = {0, {A}, {B}, {4, B}}, the
power set (set of all subsets) of ©, and u(P) =0, u({A4}) = 0.3, u({B}) = 0.7, u({A,B}) = 1.

Now consider another measurable space defined by a finite set {2 and a sigma field Sg. For concreteness,
let = {1,2,3} and Sq = 2. Let Syo be a sigma field associated with 2%, so that a second measurable
space (29, Sya) is defined.

Now define a map I' : © — 22, For concreteness, define ['(4) — {1,2} and I'(B) — {2,3}. The map I'
induces a probability 7 on the measurable space (22, Sye) through the relationship 7(E € Sye) = u({8 €
©:I'(0) € E}). For example, n({{1},{1,2}}) = u({4}) = 0.3 and #({{2,3},{1,2,3}}) = u({B}) =0.7.

Notice that this definition of the induced probability on (2%, S,) parallels that of a random variable,
except that the map I' is a one-to-many map from © — 2% instead of a one-to-one or many-to-one map
from © — Q. The map I is called a set-valued random wvariable or random set.

Even in a small problem, it may be difficult to work with the probability distribution induced on
(29, Sya) either because of the size of S, or because of the intuitive problems of working with distributions
on sets of sets. Consequently, one often considers instead the function m : 2% — [0,1] defined as
m(F € 2%) = ({0 € © : T'(d) = F}). (Notice that in the finite case, this is the induced probability
distribution 7 restricted to singleton subsets of the power set of 22.) It would be convenient if m defined
a probability distribution on (Q,2%), but it does not. The function m, however, is usually called the
basic probability assignment or b.p.a. on (£2,2%) induced by I'. Although the b.p.a. is not a probability
distribution, it does have the properties that m () = 0 and }_ ;cp0 m(F) = 1.

In this example, the b.p.a. is

m(P) =0 m({1,2}) = 0 3
m({1}) =0 m({1,3}) =

m({2}) =0 m({2,3}) = 0 7
m({3}) =0 m({1,2,3}) =0.

The basic probability assignment can be used to construct other functions on 2. In particular, define
the following two functions from 22 — [0,1]. For F,G € 2%:

bel(F) = Y m(G)



bel is called the belief function induced by I' on 2% and pl is called the plasuability function. bel and pl
can also be written in terms of I' and p; in particular,

bel(F) = p({# €©:T(0) C F})
PI(F) = u({0e@:TO)NF £0}).

From the concrete example, bel({1,2}) = 0.3 and pi({1,2}) = 1.

The belief and plausability functions have a variety of properties. In particular, belief functions are
monotone capacities of order infinity and are super-additive for disjoint events. See Molchanov (1997)
for a more detailed discussion.

4 A Dempster-Shafer Approach

Now consider the application of Dempster-Shafer methods to the “indirect” data reliability problem
posed in Section 1. Figure 1 defines a set-valued map I'(anomaly) = {survives to t, fails before t} and
I'(no anomaly) = {survives to t}. This induces the following belief and plausability functions:

bel(surviveto t) = 1—p,

pl(surviveto t) = 1

and the following basic probability assignment:

m(@) = 0
m({survives to t}) 1—pa
m({fails before t}) = 0
m({{survives to t}, {fails before t}}) = p,.

For Dempster-Shafer theory to be useful in a reliability context, it must be interpretable. There are
essentially two schools of interpretation for belief and plausability functions. One interpretation is as
“the lower and upper bounds for some unknown probability distribution” (Kohlas and Monney 1995).
Under this interpretation, no matter what distribution is selected for py|,, the probability of survival to ¢,
ps, for any given interval is bounded below by the belief function and bounded above by the plausability
function. As more data is collected, the belief function is updated using Bayes rule. This interpretation
lends itself to considering the possibility of assigning upper and lower bounds to the probability assigned
to ps), instead of simply assigning no distribution (a vacuous belief function). Assigning upper and lower
bounds to the distribution of py|, also leads to a belief function/plausability function pair for p.

The other interpretation of Dempster-Shafer theory is in terms of the “degree of support” for a
hypothesis—in this case, that the part will survive until time ¢. A degree of support of at least 1 — p,
is assigned to survival, as any observations of “no anomaly” certainly support survival. However, there
is never unequivocal evidence of failure—even in the presence of an anomaly, the part may survive until
time ¢. Since there is no evidence inconsistent with survival until time ¢, the maximum degree of support
is 1.



5 Discussion

The example considered here is representative of the class of problems where we have been considering
the use of Dempster-Shafer methods. In particular, suppose that we are interested in one phenomenon,
but that we can only collect data about another, related phenomenon; in other words, we have “indirect”
data about the phenomenon of interest. The two phenomena are related by a set-valued map—the data
that we can collect does not uniquely determine the outcome of interest. This is a natural setting to
explore the applicability of Dempster-Shafer methods.
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